Skip to content

Auto-WEKA

Auto-WEKA considers the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous methods that address these issues in isolation. Auto-WEKA does this using a fully automated approach, leveraging recent innovations in Bayesian optimization. Our hope is that Auto-WEKA will help non-expert users to more effectively identify machine learning algorithms and hyperparameter settings appropriate to their applications, and hence to achieve improved performance.

homepage: http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

version versionsuffix toolchain
2.6 -WEKA-3.8.5-Java-11 system

(quick links: (all) - 0 - a - b - c - d - e - f - g - h - i - j - k - l - m - n - o - p - q - r - s - t - u - v - w - x - y - z)